On quantum Cayley graphs

Mateusz Wasilewski

IM PAN

16 Oct 2023

Outline

• Infinite discrete quantum groups can be non-unimodular

Outline

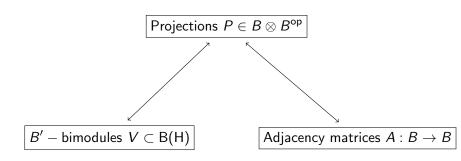
- Infinite discrete quantum groups can be non-unimodular
- We need quantum graphs that are both infinite and non-tracial

Outline

- Infinite discrete quantum groups can be non-unimodular
- We need quantum graphs that are both infinite and non-tracial
- Quantum Cayley graphs: covariant quantum adjacency matrices

Three definitions

$$(B,\psi)$$
 - fin. dim. C^* -algebra with $mm^*=\operatorname{Id}$



Weaver/Duan-Severini-Winter

Quantum relations

Let $B \subset B(H)$. Quantum relation - a weak* closed B'-bimodule $V \subset B(H)$.

Weaver/Duan-Severini-Winter

Quantum relations

Let $B \subset B(H)$. Quantum relation - a weak* closed B'-bimodule $V \subset B(H)$.

Independent of the representation!

Weaver/Duan-Severini-Winter

Quantum relations

Let $B \subset B(H)$. Quantum relation - a weak* closed B'-bimodule $V \subset B(H)$.

Independent of the representation!

From projections to relations

Any $P \in B \otimes B^{op}$ acts on B(H) via left-right multiplication. The image will be a B'-bimodule V.

Inverse of a weight

Any faithful functional $\psi: B \to \mathbb{C}$ gives rise to an operator valued weight $\psi^{-1}: \mathsf{B}(\mathsf{H}) \to B'.$

Inverse of a weight

Any faithful functional $\psi: B \to \mathbb{C}$ gives rise to an operator valued weight $\psi^{-1}: \mathsf{B}(\mathsf{H}) \to B'$. Equality $mm^* = \mathsf{Id}$ ensures that ψ^{-1} is a conditional expectation.

Inverse of a weight

Any faithful functional $\psi: B \to \mathbb{C}$ gives rise to an operator valued weight $\psi^{-1}: \mathsf{B}(\mathsf{H}) \to B'$. Equality $mm^* = \mathsf{Id}$ ensures that ψ^{-1} is a conditional expectation.

Hilbert bimodules

Using ψ^{-1} we equip any B'-bimodule V with a structure of a Hilbert B'-module.

Inverse of a weight

Any faithful functional $\psi: B \to \mathbb{C}$ gives rise to an operator valued weight $\psi^{-1}: \mathsf{B}(\mathsf{H}) \to B'$. Equality $mm^* = \mathsf{Id}$ ensures that ψ^{-1} is a conditional expectation.

Hilbert bimodules

Using ψ^{-1} we equip any B'-bimodule V with a structure of a Hilbert B'-module.

Bimodular projections

The orthogonal projection $\widetilde{P}: \mathsf{B}(\mathsf{H}) \to V$ is a B'-bimodular map, hence it is represented by an element $P \in B \otimes B^{\mathsf{op}}$.

KMS inner product

Endow B with the inner product $\langle a, b \rangle := \psi(a^*\sigma_{-\frac{i}{2}}(b))$.

KMS inner product

Endow B with the inner product $\langle a, b \rangle := \psi(a^*\sigma_{-\frac{i}{2}}(b))$.

Generalized Choi matrix

KMS inner product

Endow B with the inner product $\langle a,b\rangle:=\psi(a^*\sigma_{-\frac{i}{2}}(b)).$

Generalized Choi matrix

There is a one-to-one map Choi : $\operatorname{End}(B) \to B \otimes B^{\operatorname{op}}$ given by $|a\rangle\langle b| \mapsto a \otimes b^*$.

• $\mathsf{Choi}(S)\,\mathsf{Choi}(T) = \mathsf{Choi}(m(S \otimes T)m^*)$

KMS inner product

Endow B with the inner product $\langle a,b\rangle:=\psi(a^*\sigma_{-\frac{i}{2}}(b)).$

Generalized Choi matrix

- $\mathsf{Choi}(S)\,\mathsf{Choi}(T) = \mathsf{Choi}(m(S\otimes T)m^*)$
- Choi(T) = (Choi(T))* iff T is *-preserving

KMS inner product

Endow B with the inner product $\langle a,b\rangle:=\psi(a^*\sigma_{-\frac{i}{2}}(b)).$

Generalized Choi matrix

- $\mathsf{Choi}(S)\,\mathsf{Choi}(T) = \mathsf{Choi}(m(S\otimes T)m^*)$
- Choi(T) = (Choi(T))* iff T is *-preserving
- Choi(T) is positive iff T is completely positive

KMS inner product

Endow B with the inner product $\langle a,b\rangle:=\psi(a^*\sigma_{-\frac{i}{2}}(b)).$

Generalized Choi matrix

- $\mathsf{Choi}(S)\,\mathsf{Choi}(T) = \mathsf{Choi}(m(S\otimes T)m^*)$
- Choi $(T) = (Choi(T))^*$ iff T is *-preserving
- Choi(T) is positive iff T is completely positive
- Choi(T) is invariant under the flip iff T is KMS symmetric

Quantum adjacency matrices

Schur idempotents

A completely positive map $A: B \to B$ is a quantum adjacency matrix if $m(A \otimes A)m^* = A$.

Quantum adjacency matrices

Schur idempotents

A completely positive map $A: B \to B$ is a quantum adjacency matrix if $m(A \otimes A)m^* = A$.

Undirected quantum graphs

A quantum graph is called <u>undirected</u> if its quantum adjacency matrix is KMS symmetric.

Quantum adjacency matrices

Schur idempotents

A completely positive map $A: B \to B$ is a quantum adjacency matrix if $m(A \otimes A)m^* = A$.

Undirected quantum graphs

A quantum graph is called <u>undirected</u> if its quantum adjacency matrix is KMS symmetric.

Degree matrix

The matrix D := A1 is called the degree matrix of the quantum graph.

Now B is an infinite direct sum of matrix algebras

Now B is an infinite direct sum of matrix algebras

Bounded degree

Normal cp maps $A: B \to B$ satisfying $m(A \otimes A)m^* = A$ define a class of quantum graphs of bounded degree.

Now B is an infinite direct sum of matrix algebras

Bounded degree

Normal cp maps $A: B \to B$ satisfying $m(A \otimes A)m^* = A$ define a class of quantum graphs of bounded degree.

Projections

The projections $P \in B \overline{\otimes} B^{op}$ of bounded degree are exactly the ones with $(\operatorname{Id} \otimes \psi^{op})(P) \in B$.

Now B is an infinite direct sum of matrix algebras

Bounded degree

Normal cp maps $A: B \to B$ satisfying $m(A \otimes A)m^* = A$ define a class of quantum graphs of bounded degree.

Projections

The projections $P \in B \overline{\otimes} B^{op}$ of bounded degree are exactly the ones with $(\operatorname{Id} \otimes \psi^{op})(P) \in B$.

Bimodules

Weak* bimodules $V \subset B(H)$ of bounded degree are exactly the self-dual ones (for all representations $B \subset B(H)$).

Compact quantum groups

 C^* -algebra $C(\mathbb{G})$ with a coassociative *-homomorphism $\Delta: C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G}) +$ density conditions.

Compact quantum groups

 C^* -algebra $C(\mathbb{G})$ with a coassociative *-homomorphism $\Delta: C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G}) +$ density conditions.

Haar measure h exists

Compact quantum groups

 C^* -algebra $C(\mathbb{G})$ with a coassociative *-homomorphism $\Delta: C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G}) +$ density conditions.

- Haar measure h exists
- Good representation theory (Peter-Weyl etc.)

Compact quantum groups

 C^* -algebra $C(\mathbb{G})$ with a coassociative *-homomorphism $\Delta: C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G}) +$ density conditions.

- Haar measure h exists
- Good representation theory (Peter-Weyl etc.)

Discrete dual

Set $\ell^{\infty}(\mathbb{\Gamma}) := \ell^{\infty} - \bigoplus_{\alpha \in Irr(\mathbb{G})} M_{d_{\alpha}}$. One can define $\widehat{\Delta} : \ell^{\infty}(\mathbb{\Gamma}) \to \ell^{\infty}(\mathbb{\Gamma}) \overline{\otimes} \ell^{\infty}(\mathbb{\Gamma})$.

Compact quantum groups

 C^* -algebra $C(\mathbb{G})$ with a coassociative *-homomorphism $\Delta: C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G}) +$ density conditions.

- Haar measure h exists
- Good representation theory (Peter-Weyl etc.)

Discrete dual

Set
$$\ell^{\infty}(\mathbb{\Gamma}) := \ell^{\infty} - \bigoplus_{\alpha \in \mathsf{Irr}(\mathbb{G})} M_{d_{\alpha}}$$
. One can define $\widehat{\Delta} : \ell^{\infty}(\mathbb{\Gamma}) \to \ell^{\infty}(\mathbb{\Gamma}) \overline{\otimes} \ell^{\infty}(\mathbb{\Gamma})$.

There are also explicit formulas for the left and right Haar measures.

Convolution operators

If $A_1x := P_1 * x$ and $A_2 := P_2 * x$ then $A := m(A_1 \otimes A_2)m^*$ is given by $Ax = P_1P_2 * x$.

Convolution operators

If $A_1x := P_1 * x$ and $A_2 := P_2 * x$ then $A := m(A_1 \otimes A_2)m^*$ is given by $Ax = P_1P_2 * x$.

Covariant adjacency matrices

Convolution operator Ax := P * x is a quantum adjacency matrix iff P is a projection.

Convolution operators

If $A_1x := P_1 * x$ and $A_2 := P_2 * x$ then $A := m(A_1 \otimes A_2)m^*$ is given by $Ax = P_1P_2 * x$.

Covariant adjacency matrices

Convolution operator Ax := P * x is a quantum adjacency matrix iff P is a projection.

• KMS symmetric iff *P* is invariant under the unitary antipode *R*

Convolution operators

If $A_1x := P_1 * x$ and $A_2 := P_2 * x$ then $A := m(A_1 \otimes A_2)m^*$ is given by $Ax = P_1P_2 * x$.

Covariant adjacency matrices

Convolution operator Ax := P * x is a quantum adjacency matrix iff P is a projection.

- KMS symmetric iff *P* is invariant under the unitary antipode *R*
- GNS symmetric iff *P* is invariant under the antipode *S*.

Quantum Cayley graphs

Generating projections

A projection $P \in \ell^{\infty}(\Gamma)$ is generating if $\bigvee_{n \geq 1} [P^{*n}] = 1$, where [T] is the support projection of T.

Quantum Cayley graphs

Generating projections

A projection $P \in \ell^{\infty}(\mathbb{F})$ is generating if $\bigvee_{n \geq 1} [P^{*n}] = 1$, where [T] is the support projection of T.

Quantum Cayley graph

Let $P \in \ell^{\infty}(\Gamma)$ be a generating projection such that R(P) = P and $\varepsilon(P) = 0$. We call the pair $(\ell^{\infty}(\Gamma), P * \cdot)$ a quantum Cayley graph of Γ .

Quantum Cayley graphs

Generating projections

A projection $P \in \ell^{\infty}(\Gamma)$ is generating if $\bigvee_{n \geq 1} [P^{*n}] = 1$, where [T] is the support projection of T.

Quantum Cayley graph

Let $P \in \ell^{\infty}(\Gamma)$ be a generating projection such that R(P) = P and $\varepsilon(P) = 0$. We call the pair $(\ell^{\infty}(\Gamma), P * \cdot)$ a quantum Cayley graph of Γ .

Bi-Lipschitz equivalence

For two quantum Cayley graphs of \mathbb{F} the corresponding quantum metric spaces are bi-Lipschitz equivalent.

The bimodule picture

Decomposition of bimodules

 $B:=\ell^\infty(\mathbb{\Gamma})\subset \mathsf{B}(\mathsf{H})$, where $\mathsf{H}:=\bigoplus_{\alpha}\mathbb{C}^{d_\alpha}$. Then a weak* closed B'-bimodule $V\subset \mathsf{B}(\mathsf{H})$ is just a collection of subspaces $V_{\alpha\beta}\subset \mathsf{B}(\mathbb{C}^{d_\alpha},\mathbb{C}^{d_\beta})$.

The bimodule picture

Decomposition of bimodules

 $B:=\ell^{\infty}(\mathbb{\Gamma})\subset \mathsf{B}(\mathsf{H})$, where $\mathsf{H}:=\bigoplus_{\alpha}\mathbb{C}^{d_{\alpha}}$. Then a weak* closed B'-bimodule $V\subset \mathsf{B}(\mathsf{H})$ is just a collection of subspaces $V_{\alpha\beta}\subset \mathsf{B}(\mathbb{C}^{d_{\alpha}},\mathbb{C}^{d_{\beta}})$.

The central case

Suppose $P=\mathbb{1}_{\gamma}$, where γ is a generating representation of \mathbb{G} . Then $V_{\alpha\beta}=\operatorname{span}\{T(\operatorname{Id}\otimes|v\rangle):v\in\operatorname{H}_{\gamma},T\in\operatorname{Mor}(\alpha\otimes\gamma,\beta)\}$, where $\operatorname{Id}\otimes|v\rangle:\operatorname{H}_{\alpha}\to\operatorname{H}_{\alpha}\otimes\operatorname{H}_{\gamma}$ is given by $(\operatorname{Id}\otimes|v\rangle)(w):=w\otimes v$.

Examples

Free unitary quantum groups

 $\mathbb{\Gamma} = \widehat{U_F^+}$ and $P = \mathbb{1}_u + \mathbb{1}_{\overline{u}}$. Because $u^{\otimes n}$ is irreducible the directed quantum graph $\mathbb{1}_u * \cdot$ is acyclic. Possibly we get a tree.

Examples

Free unitary quantum groups

 $\mathbb{\Gamma}=\widehat{U_F^+}$ and $P=\mathbb{1}_u+\mathbb{1}_{\overline{u}}$. Because $u^{\otimes n}$ is irreducible the directed quantum graph $\mathbb{1}_u*\cdot$ is acyclic. Possibly we get a tree.

$\widehat{SU(2)}$

This is related to well-studied quantum random walks on the dual of SU(2) (Biane).

Frucht's theorem

Theorem (Frucht)

Every finite group is an automorphism group of a finite graph.

Frucht's theorem

Theorem (Frucht)

Every finite group is an automorphism group of a finite graph.

Theorem (Watkins' conjecture)

For a finite group G there exists a Cayley graph with all automorphisms coming from G unless:

- G is abelian with elements of order 2;
- G is generalized dicyclic;
- G belongs to the finite set of exceptional examples.

Quantum Frucht?

Theorem (Banica-McCarthy)

Some finite quantum groups, e.g. \widehat{S}_3 , do not arise as quantum automorphism groups of graphs.

Quantum Frucht?

Theorem (Banica-McCarthy)

Some finite quantum groups, e.g. \widehat{S}_3 , do not arise as quantum automorphism groups of graphs.

Quantum graphs enter the stage

Is it possible that every finite quantum group is a quantum automorphism group of a finite **quantum** graph?

Quantum Frucht?

Theorem (Banica-McCarthy)

Some finite quantum groups, e.g. \widehat{S}_3 , do not arise as quantum automorphism groups of graphs.

Quantum graphs enter the stage

Is it possible that every finite quantum group is a quantum automorphism group of a finite **quantum** graph? I don't know yet, but there are some partial results.

Duals of finite groups

Separating matrix coefficients

Let $\Gamma := \widehat{G}$. P – rank one projection in $\mathbb{C}[G]$. If the Fourier transform of P separates points of G then the quantum automorphism group of $(\mathbb{C}[G], P * \cdot)$ is equal to Γ .

Duals of finite groups

Separating matrix coefficients

Let $\Gamma := \widehat{G}$. P – rank one projection in $\mathbb{C}[G]$. If the Fourier transform of P separates points of G then the quantum automorphism group of $(\mathbb{C}[G], P * \cdot)$ is equal to Γ .

Examples

If G admits a faithful irreducible representation then a generic choice works. Examples include permutation groups, dihedral groups etc.

Quantum graphs
Quantum Cayley graphs
Frucht property

Thank you for your attention!