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Quantum graphs
Quantum Cayley graphs

Frucht property

Three definitions

(B, ψ) - fin. dim. C ∗-algebra with mm∗ = Id

Projections P ∈ B ⊗ Bop

B ′ − bimodules V ⊂ B(H) Adjacency matrices A : B → B
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Frucht property

Weaver/Duan-Severini-Winter

Quantum relations

Let B ⊂ B(H). Quantum relation - a weak∗ closed B ′-bimodule
V ⊂ B(H).

Independent of the representation!

From projections to relations

Any P ∈ B ⊗ Bop acts on B(H) via left-right multiplication. The
image will be a B ′-bimodule V .
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Frucht property

From bimodules to projections

Inverse of a weight

Any faithful functional ψ : B → C gives rise to an operator valued
weight ψ−1 : B(H)→ B ′.

Equality mm∗ = Id ensures that ψ−1 is a
conditional expectation.

Hilbert bimodules

Using ψ−1 we equip any B ′-bimodule V with a structure of a Hilbert
B ′-module.

Bimodular projections

The orthogonal projection P̃ : B(H) → V is a B ′-bimodular map,
hence it is represented by an element P ∈ B ⊗ Bop.
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Frucht property

Generalized Choi matrix

KMS inner product

Endow B with the inner product 〈a, b〉 := ψ(a∗σ− i
2
(b)).

Generalized Choi matrix

There is a one-to-one map Choi : End(B) → B ⊗ Bop given by
|a〉〈b| 7→ a⊗ b∗.

Choi(S) Choi(T ) = Choi(m(S ⊗ T )m∗)

Choi(T ) = (Choi(T ))∗ iff T is ∗-preserving

Choi(T) is positive iff T is completely positive

Choi(T ) is invariant under the flip iff T is KMS symmetric
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Frucht property

Quantum adjacency matrices

Schur idempotents

A completely positive map A : B → B is a quantum adjacency
matrix if m(A⊗ A)m∗ = A.

Undirected quantum graphs

A quantum graph is called undirected if its quantum adjacency ma-
trix is KMS symmetric.

Degree matrix

The matrix D := A1 is called the degree matrix of the quantum
graph.
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Frucht property

What changes in infinite dimension?

Now B is an infinite direct sum of matrix algebras

Bounded degree

Normal cp maps A : B → B satisfying m(A ⊗ A)m∗ = A define a
class of quantum graphs of bounded degree.

Projections

The projections P ∈ B⊗Bop of bounded degree are exactly the ones
with (Id⊗ψop)(P) ∈ B.

Bimodules

Weak∗ bimodules V ⊂ B(H) of bounded degree are exactly the
self-dual ones (for all representations B ⊂ B(H)).
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Frucht property

Compact/discrete quantum groups

Compact quantum groups

C ∗-algebra C (G) with a coassociative ∗-homomorphism ∆ : C (G)→
C (G)⊗ C (G) + density conditions.

Haar measure h exists

Good representation theory (Peter-Weyl etc.)

Discrete dual

Set `∞(�) := `∞ −
⊕

α∈Irr(G)Mdα . One can define ∆̂ : `∞(�) →
`∞(�)⊗`∞(�).

There are also explicit formulas for the left and right Haar measures.
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Frucht property

Covariant adjacency matrices

Convolution operators

If A1x := P1 ∗ x and A2 := P2 ∗ x then A := m(A1⊗A2)m∗ is given
by Ax = P1P2 ∗ x .

Covariant adjacency matrices

Convolution operator Ax := P ∗ x is a quantum adjacency matrix
iff P is a projection.

KMS symmetric iff P is invariant under the unitary antipode R

GNS symmetric iff P is invariant under the antipode S .
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Quantum Cayley graphs

Generating projections

A projection P ∈ `∞(�) is generating if
∨

n>1[P∗n] = 1, where [T ]
is the support projection of T .

Quantum Cayley graph

Let P ∈ `∞(�) be a generating projection such that R(P) = P and
ε(P) = 0. We call the pair (`∞(�),P ∗ ·) a quantum Cayley graph
of �.

Bi-Lipschitz equivalence

For two quantum Cayley graphs of � the corresponding quantum
metric spaces are bi-Lipschitz equivalent.
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Frucht property

The bimodule picture

Decomposition of bimodules

B := `∞(�) ⊂ B(H), where H :=
⊕

α C
dα . Then a weak∗ closed

B ′-bimodule V ⊂ B(H) is just a collection of subspaces Vαβ ⊂
B(Cdα ,Cdβ ).

The central case

Suppose P = 1γ , where γ is a generating representation of G. Then
Vαβ = span{T (Id⊗|v〉) : v ∈ Hγ ,T ∈ Mor(α ⊗ γ, β)}, where
Id⊗|v〉 : Hα → Hα ⊗ Hγ is given by (Id⊗|v〉)(w) := w ⊗ v .
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Frucht property

Examples

Free unitary quantum groups

� = Û+
F and P = 1u + 1u. Because u⊗n is irreducible the directed

quantum graph 1u ∗ · is acyclic. Possibly we get a tree.

ŜU(2)

This is related to well-studied quantum random walks on the dual
of SU(2) (Biane).
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Frucht property

Frucht’s theorem

Theorem (Frucht)

Every finite group is an automorphism group of a finite graph.

Theorem (Watkins’ conjecture)

For a finite group G there exists a Cayley graph with all automor-
phisms coming from G unless:

G is abelian with elements of order 2;

G is generalized dicyclic;

G belongs to the finite set of exceptional examples.
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Quantum Frucht?

Theorem (Banica-McCarthy)

Some finite quantum groups, e.g. Ŝ3, do not arise as quantum
automorphism groups of graphs.

Quantum graphs enter the stage

Is it possible that every finite quantum group is a quantum auto-
morphism group of a finite quantum graph?

I don’t know yet, but
there are some partial results.
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Duals of finite groups

Separating matrix coefficients

Let Γ := Ĝ . P – rank one projection in C[G ]. If the Fourier trans-
form of P separates points of G then the quantum automorphism
group of (C[G ],P ∗ ·) is equal to Γ.

Examples

If G admits a faithful irreducible representation then a generic choice
works. Examples include permutation groups, dihedral groups etc.
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Thank you for your attention!

Mateusz Wasilewski Quantum Cayley graphs


	Quantum graphs
	Quantum Cayley graphs
	Frucht property

